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1. INTRODUCTION

We determine the saturation class for the Lp-norms, 1~ P < 00, of the
modified Bernstein operators M n' These operators were first defined and
studied by Durrmeyer [4J and later by Derriennic [1,2,3]. For a function
fELI(I), with [:= [0, 1J, Mnf is given by

where

(Mnf)(x):=(n+1) ±PnAX)f Pnk(t)f(t)dt,
k=O I

nEN,

It will be shown that the operators M n have the same saturation order and
class as the well known Kantorovic operators Pn defined for a function
fELJ(I) by

(Pnf)(x):=(n+1) ±Pnk(X)f f(t)dt,nEN,
k~O h

The saturation properties of the P n were investigated by Maier and
Riemenschneider [6, 7, 8, 10].

For the proof of the direct theorem we use-as in [7, 10J-especially
the Lp-approximation error for certain logarithmic functions. We were
able to get the needed properties by using known estimates for the
Lp-approximation error of the Kantorovic operators, theorems of
Voronovskaja type for LJ-integrable functions, and by application of
Lebesgue's dominated convergence theorem.
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The main result of this paper will be that for f E Lp(I), 1~ p < 00,

IIMnf - fll p= 0C~ 1) ¢> f ESp ,

where for f E Lp(I), 1~ p ~ 00, Sp is defined by

Sp := {f If(x) = k +rt(~~ t) dt a.e. on I, y E (0, 1), h(O) = h(l) = 0,

h' E Lp(I) for 1 < P ~ 00, hE BV(I) for p = 1}.
-'

2. Lp-ApPROXIMATION OF CERTAIN LOGARITHMIC FUNCTIONS
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In this section we will obtain estimates for the Lp-approximation error of
log-functions. First we need the following Voronovskaja type result for
Lj-integrable functions proved in [3].

LEMMA 1.1. For fELj(I), f twice differentiable in a point XE(O, 1),
there holds

lim (n+l)(MJ-f)(x)=(x(1-x)j'(x»)'.
n ~ co

We now prove an analogous result for the Kantorovic operators P".

LEMMA 1.2. For f E L j(I), f twice differentiable in a point x E (0, 1),
there holds

lim (n+ l)(PJ - f)(x)=!(x(l-x)j'(x))'.
n ~ co

Proof Let F(z) := Jof(t) dt, then

F'(z) = f(z)

and

a.e. in I

for k = 1, 2, 3 as f is twice differentiable in x.

Consider now the Taylor formula

1
F(t) = F(x) + (t - x) F'(x) +"2 (t - X)2F"(X)

1+ 3! (t - x?F"'(x) + (t - X)3 r(t - x), (1)
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where
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Ir( t - x) I<M for tEl and lim r( t - x) = O.
t~x

Differentiating this formula with respect to t we get a.e. in I

1 d
f(t) = f(x) + (t - x)f'(x) +"2 (t - X)2 j"(x) + dt ((t -X)3r(t - x)).

Multiplying this by (n + 1) and taking the operator Pn on both sides we get
(see [9])

1 /I [ n ( 1) 1]+- f (x) x(l-x)--- x(1-x)-- --
2 n+l 3 n+1

+ (n+ 1) [Pn(~ ((t-X)3r(t-X))) ] (x).

In the following the last term in the sum on the right side will be denoted
by (n + 1)E*(n, x). Hence the proposition will be proved if we show that

lim (n+1)E*(n,x)=0.
n~ 00

(2)

Using the well known relation between the Kantorovic operator Pn and the
Bernstein operator Bn + 1 (see [5, p. 30]),

and considering the result at the fixed point x, we get

n+! (k )3 (k )(n+ 1) E*(n, x) = (n + 1) L ---x r ---x
k~O n+1 n+1

(
n+ 1)x k Xk- 1(1_ x)n-k(k - (n + 1)x).

Consider now

(n + 1) x( 1- x) E*(n, x)

1 n+l (k )
(n+1)2k~OPn+l.k(x)(k-(n+l)x)4r n+1- x .



Lp-SATURATION 263

Choosing 1::>0, there exists a <5>0 so that Ir(l-x)1 <I:: for all It-xl <15
and we obtain

(n + 1) x(1 - x) IE*(n, x)1

~ 1 2 { L (k-(n+l)X)4Pn + 1•k(x)lr(-;-x)!
(n + 1) Ikl(n + l) _ xl d n +

1 1 6 I (k )\)+ 2 2 L (k-(n+ 1)x) Pn+l.k(X) r --l- x !
(n + 1) <5 Iklln + I) _ xl ;, b n + )
1 {n+l

~ 2 I:: L (k-(n+l)x)4pn +l. k(X)
(n+1) k~O

1 Mn+l }
+ (n+ 1)2 <5 2k~O (k-(n+ l)X)6pn + 1•k(x)

:>::x(1-x) K{I::+_
1

_
M

}
"'" n + 1 <5 2

with a constant K independent of nand x. The last estimate follows by
Lorentz's formulas (see [5, p.14]).

From this we have (2) and the lemma is proved.

Note that we get from the above estimate

(n + 1) IE*(n, x)1 ~ K, (3)

where K is independent of n and x which will be used later.
For the analogous term referring to the operator M n we get the following

result:

LEMMA 1.3. Let fELl (I), f twice differentiable in a point x E (0, 1).
Then the following estimate holds.

(n + 1) IE(n, x)1 ~ K[l + (x(l- X))-1/2J

with a constant K independent of n and x and

E(n, x) = [ M n(~ ((t - X)3 r(t - X))) }X),

where (t - x )3r(t - x) is the same remainder term as in (1).

Proof The proposition follows as a direct consequence of the estimates
in [3]. Derriennic got by means of integration by parts
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E(n, x) = (n + 1)(xn(1- X)3r(1 - x) + (1 - X)nx 3r( - x))

- (n + 1) f Pnk(X) f P~k(t)(t - X)3r(t - x) dt.
k~O I

Obviously the first term on the right side equals O( l/(n + 1)). The second
term will be denoted by e(n, x). There holds (see [3])

(x(1- x) ne(n, X))2

~ n
3[~~ Pn+ l.k+ l(x)((n + 1) x- (k + 1))2J[e

2
S n6(x) +~ SnS(x)1

(4)
choosing e and (j as in the proof of Lemma 1.2 and putting

n-l

Snm(x):= L: Pn+ l,k+ l(X) f Pn-l,k(t)(t - x)m dt. (5)
k~O I

Reference [3 J gives us the estimate

and by Lorentz's formulas (see [5, p. 14J) we have that the term in the first
bracket on the right side of (4) is bounded by (n + 1) x( 1- x). By sum
marizing these results we get the proposition of Lemma 1.3:

We are now able to estimate the Lp-approximation error for certain log
functions. From now on we define

g 1(t) := In(t),

g2(t) :=In(l- t),

g(t) :=gl(t)-g2(t),

t E (0, 1J,
t E [0, 1),

t E (0, 1).

LEMMA 1.4. Let l/q = (p - 1)/p for 1~ P < 00 and l/q = 1 for P = 00.

Then the following statements are valid:

(i) IIX1/q(Mngl-gdllp=OC~1)

(ii) 11(1- x)lfq(Mng2 - g2)lI p= 0 (n ~ 1)

(iii) Ilx 1/
Q
(1 - x)l/Q(Mng - g)lI p= 0(n ~ 1).
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Proof First we remark that
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holds by a change of variables and transformation of the summation index.
Furthermore (iii) is a direct consequence of (i) and (ii). So we only have to
prove (i). We will deal explicitly with p = land p = r:tJ using interpolation
methods (see also [10J) for the remaining cases.

p = 1. As g 1 ELI (I) and g 1 is twice differentiable in every point x E (0, 1],
we get from the result in [3J by putting in the terms of g~ and g~

(n + 1) [ 1 6 J
(n+ I)(Mn g 1-g;)(x)= (n+2)(n+3) - x 2+:;- (n+9)

+ (n + 1) E(n, x).

Thus we have

* [ 6(n + 1f 'JM~ (x) := (n + 1) (Mn gl - g;)(x) - (n + 2)(n + 3) (Pn gl - g;)(x)

_ 2n(n + 1) [ 6(n + 1)2 * J
-(n+2)(n+3)+(n+1) E(n,X)-(n+2)(n+3)E (n,x) .

By (3) and Lemma 1.3 we get

IM,':'(x) I ::::;K(1 + (x(I-X))-1/2) =: s(x) a.e. on I. (6 )

This means that there exists a function sEL 1(I) which bounds IM:(x)1
independent of n a.e. on I.

We are now able to change integration and taking the limit by use of
Lebesgue's dominated convergence theorem,

n -. 00

I . I 6(n + 1f I= hm (n+l)(Mn g 1-g;)(x)-( (3 (Pn g 1-g1)(X) dx
fiHYC n+2) n+ )

II 1 1 1 11= (1- 2x) -- x(l-x)-- 3(1- 2x) -+ 3x(l-x) - dx= 2.
I, X x 2

X x 2

Hence we get from the definition of M,':' and the fact that
liP" g1- g 1111 = O(lj(n + 1)) (see [10J) the proposition for the case p = 1

640/54;3-3
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Now we treat the case
P = 00. We look at

Ilx(Mngj - gdll 00 ~ Ilx(Mngj - gdll ~,j/2] + Ilx(Mngj - gdll ~/2,j].

Using the fact that Ilx(Pn g j -gdllw=O(lj(n+l)) (see [10J) and the
estimate (6) we obtain

Ilx(Mngj - gdll ~.j/2] = 0 C~ 1). (7)

Now we have to look at x E [!, 1].
By the same arguments as in the proof of Lemma 1.2 with the Taylor

formula for G(t) := Sb gj(z) dz we have

1
G(t) = G(x) + (t - x) G'(x) +"2 (t - X)2 G"(x)

1 1
+3! (t-x?GII/(x)+ 4! (t-X)4G""(X) + (t-X)4r(t-X),

where

Ir(t-x)1 ~M, tE [0, IJ and lim r( t - x) = O.
t~x

Differentiating this with respect to t and taking the operator M n on both
sides we get by using the recursion formulas for

f Pnk(X) f Pnk(t)(t-x)' dt, SE No
k~O I

(see [2J)

with

R(n, x):= [ M n(~ ((t-X)4 r(t-x))) ] (x).

We have used the fact that x E [!, 1J implies the boundedness of Igikll for
k= 1, 2, 3.



By the same arguments as in [3J we get

IR(n, x)1 ~ (n + 1) Ixn(l-x)4 r(1-x) + (1-xY x 4r( -xli

I
n I

+ (n + 1) k~O Pnk(X) LP~k(t)(t - X)4 r (t - x) dt I

=: rl(x) + rAx)

and r 1 is bounded by K/ (n + 1), K independent of nand x.
In an analogous way to [3] we obtain

Snm(X) defined as in (5).
Using the notation

we have
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(8)

and we can deduce by straightforward calculation the recursion formula

+2(m-1) S~m_Z(x))+m(1-2x)S~.m_I(X)J

and by estimating S:o(x) and S:I(X) we get

the constants K1 and K z being independent of nand x.
From this we get with (8)

(x(1- x) nrz(x)f ~ (x(1- x))Z [ K 1<;z + K z~l

Hence Irzl=O(1/(n+1)).
Thus it follows that
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and taking account of (7) we have proved the case P = 00. The cases
1 < P < 00 now follow by using interpolation theory.

Now we possess the necessary tools for the proof of the main results.

3. SATURATION OF M n

We first mention a direct theorem. We have proved the same estimates
for log-functions concerning M n as they were given for P n in [7, 10].

Using the representation

(Mnf)(x) = { K(n, t, x) f(t) dt,

where
n

K(n,t,x):=(n+l) L Pnk(X)Pnk(t)
k=O

we are now able to show the direct result in the same way as in [10].

THEOREM 2.1. Let f E Lp(I), f ESp. Then the following result holds:

(n + 1) liMn! - flip ~ [C[II1'llp + Ilh'llp],
C[ Ilhll 00 + Ilhll BV],

C denoting a constant independent of nand x.

Proof Using the representation

1<P~ 00,

P= 1,

f(t) - f(x) = x(l- x) f'(x)(g(t) - g(x)) +r(g(u) - g(t)) dh(u)
t

we get by applying the operator M n, then taking Lp-norms on both sides
and using Lemma 2 in [10] (f E Lp(I), f ESp, 1 < P ~ 00 implies l' E Lp(I))

1<P ~ 00,

P= 1,

where we write the variable x in the Lp-norm only for more clearness. Thus
we now have to estimate the first term on the right side. Again we do this
only for P = 1 and P = 00 using interpolation theory (see [10]) for the rest
of the proposition.



p = 1. By using Fubini's theorem and the fact that

sgn(g(u) - get»~ = sgn(u-

we get

{![M n(f (g(u) - g(t» dh(U»)J(x) [ dx

~L {( [Mn((g(u)-g(t»+)J(x)dx

+r [Mn(( get) - g(u» + )](x) dX} Idh(u)l.
o J
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We now show that the term in the curly bracket equals O(1/(n+ 1» which
completes the proof for the case p = 1.

For every function f ELI (I) it is easily seen that there holds

L(Mnf - f)(x) dx = O.

As (g(u)- g(x»+ =0 for u~x, it follows that

0=r [[Mn((g(u)-g(t))+)](x)-(g(u)-g(x))+J dx
o

+r[Mn((g(u)- g(t»+)J(x) dx.
u

Thus

by Lemma 1.4(iii).
p = 00. With analogous transformations as in [lOJ we get

[lMn(f (g(U)-g(l»h'(U)dU)] (Xli

~ Ilh'll 00 { -x[(Mngl - gd(x)J - (1- x)[(Mng2 - g2)(X)J}

= IIh'II 00 0C~ 1)
by use of Lemma 1.4(i), (ii).

The proof of the following inverse theorem for the cases 1 ~ P < 00 will
be based on the investigation of special sequences of functionals.
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THEOREM 2.2. Let f E Lp(l), 1:'( p < 00, and

Then for the function f there holds f ESp.

Proof We first look at the case

p=1. Let fEL1(l) with IIMnf-flll=O(I/(n+l)) and (Ln)nEN a
sequence of linear functionals defined for all cP E C(I) by

Ln(cp) := f (n + 1)(Mnf - f)(x) cp(x) dx.
I

We now prove two propositions about their convergence.

PROPOSITION 2.2.1. For all cp E C2(1) there holds

(9)

lim L n(cp)=ff(x)(x(l-x)cp'(x))'dx=:L(cp). (10)
n-+oo I

Proof By [2, Lemma 111.3, Theorem 11.5] we have for all rx, [3 E L 1(I)
the symmetric relation

f (Mnrx)(x) [3(x) dx=f rx(x)(Mn[3)(x)dx
I I

and for all cp E C2(1),

lim (n + 1)(Mncp - cP )(x) = (x(1- x) cp'(x))'
n~ 00

uniformly on I.
Using these facts we get

}~~ (n + 1) { (Mnf - f)(x) cp(x) dx

= }~~ (n + 1) { (Mncp - cP )(x)f(x) dx

= {f(x)[}~~ (n+ I)(Mncp-cp)(x)] dx

= {f(x)(x(l-x) cp'(x))' dx

and Proposition 2.2.1 is proved.
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PROPOSITION 2.2.2. For all cp E C(I) there exists a subsequence (Lnkh E N

of (L,Jn EN such that

lim LnJcp)=f (p(x)dh(x)=:L*(cp),
k ......... 'x; I

where hE BV(I) and h(O) = h(1) = O.

Proof As IIMnf - fill = D(l/(n + 1)), we get

ILn(cp)l::;; Ilcpllcc(n+ 1) IIMnf- fill ::;;Kllcpllcc

(11)

with a constant K independent of n. Thus the sequence (Ln)nEN is
uniformly bounded.

By Riesz's representation theorem there exists for every L n a unique
hn E BVN(I) such that

and
I

IIL n II = V (h n ),

o

where h E BVN( [a, b]) if h is of bounded variation on [a, bJ and h(a) = O.
We show that

hn = (n + 1)(£1nf - F),

where

F(x) =rf(t) dt
o

and

(£1nf)(x) := (n + 1) f r Pnk(t) dt f Pnk(t) f(t) dt.
k~O 0 I

We have

d _
- ((n + 1)(Mnf - F))(x) = (n + 1)(Mnf - f)(x)
dx

and (n + 1)(£1n1 - F) E BVN(I) as Mnf is a polynomial of degree n, F is an
absolutely continuous function on I, and (.,ffnf)(O) = F(O) = O. Therefore
hn = (n + 1)(Mnf - F) as hn E BVN(I) is unique.

From

f Pnk(t)dt=_l_l
I n+
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we get hn(1)=O. We have IILnl1 =VMhn)= Ilhnll BV uniformly bounded and
Ihn(x)1 = Ihn(x)-hn(O)1 ~ IlhnlI BV '

Hence by two theorems of Helly and Bray (see [11, Theorem 16.3,
Theorem 16.4]), there exists a subsequence (Lnk)kE f\\! so that

lim L nk(cp) = I cp(x) dh(x),
k--> 00 I

hE BV(I), h(O) = h(l) = 0

and Proposition 2.2.2 is proved.
From (10) and (11) we now have for all cpEC2(I)

I f(x)(x(l-x) cp'(x))' dx= I cp(x) dh(x),
I I

(12)

where hE BV(I), h(O) = h( 1) = O.
This is the same equation as in Maier's proof for the Lj-saturation of the

Kantorovic operators (see [7, (14)]). Hence

Ix h(t)
f(x)=k+ y t(l_t)dt a.e. on I, kE IR, yE (0,1)

and the case p = 1 is proved.
We now look at
l<p<oo. Let fELp(I) with IIMnf-fllp=O(lj(n+1)) and for

cp ELq(I) consider the sequence of functionals defined in (9).
The equality (10) still holds true and we get by Holder's inequality

for all cp ELq(I)

as liMn! - flip = O(lj(n + 1)). This implies the uniformly boundedness of
the sequence (Ln)nEf\\!'

As every ball of L;(I) is weakly*-compact, there exists a subsequence
(LnkhE f\\! which is weakly*-convergent to a functional L * in LiI). The
representation theorem for bounded linear functionals in Lq(I) gives us the
existence of a function hE Lp(I) such that

L*(cp) = {h(x) cp(x) dx.

Now (10) equals (13) for all cp E C2(I) and we have

{f(x)(X(l - x) cp'(x))' dx = { cp(x) h(x) dx.

(13 )

(14 )
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The same equation was obtained by Maier in his proof for the L p 

saturation of the Kantorovic operators [8, (8)]. Hence f ESp and the
theorem is proved.

Theorems 2.1 and 2.2 now give a global saturation result for the
operators M n and we see that they have the same saturation order and
dass as the Kantorovic operators.

The trivial class follows as a direct consequence of the above proofs as
the solutions of the homogeneous parts of the integral Eqs. (12) and (14).

COROLLARY 2.3. For f E Lp(I), 1~ p < 00, there holds

IIMJ - fllp=o C~ l)~f=k
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