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1. INTRODUCTION

We determine the saturation class for the L,-norms, 1< p<oo, of the
modified Bernstein operators M,. These operators were first defined and
studied by Durrmeyer [4] and later by Derriennic [1, 2, 3]. For a function
feL,(I), with I:=[0,1], M, f is given by

(M) = (1 41) Y pul) [ puld) S0, meN,
k=0 !

where
Pulx) = (Z) (1 —xy =k

It will be shown that the operators M, have the same saturation order and
class as the well known Kantorovi¢ operators P, defined for a function

feL,(I) by

" k k+1
(P, )x):=(n+1) ) Pnk(x)_[l ft)dt,neN, I := [m’;{:————l]

The saturation properties of the P, were investigated by Maier and
Riemenschneider [6, 7, 8, 10].

For the proof of the direct theorem we use—as in [7, 10]—especially
the L,-approximation error for certain logarithmic functions. We were
able to get the needed properties by using known estimates for the
L,-approximation error of the Kantorovi¢ operators, theorems of
Voronovskaja type for L;-integrable functions, and by application of
Lebesgue’s dominated convergence theorem.
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L ,-SATURATION 261
The main result of this paper will be that for fe L,(I), I<p<oc,
1
1M, £~ 11,=0 (57 )= fe5,

where for fe L,(I), 1< p< o, S, is defined by

x B
5= {1 =k | s

dtae.onl, ye(0, 1), H{0)=h{1)=0,
h'eL,(I)for 1 <p< oo, he BV(I) for p= 1}.

2. Lp—APPROXIMATION OF CERTAIN LoGariTHMIC FUNCTIONS

In this section we will obtain estimates for the L -approximation error of
log-functions. First we need the following Voronovskaja type result for
L -integrable functions proved in [3].

Lemma 1.1. For felL,(I), f twice differentiable in a point xe(0, 1},
there holds

Hm (n+ D(M,f — f)(x)=(x(1—x) f'(x)).

o~ X

We now prove an analogous result for the Kantorovi¢ operators P, .

Lemma 1.2. For feL,(I), f twice differentiable in a point xe(0, 1},
there holds

lim (n+1)(P, [ —f)(x) = 3(x(1 —x) f'(x)).

Proof. Let F(z) := {3 f(t) dI, then
F'(z)=f(z) ae in’f

and
FR(xy=f%"Y(x) fork=1,2, 3 as f is twice differentiable in x.

Consider now the Taylor formula

F(t)=F(X)+ (t—x) F'(x)_f_% (t—x)zF”(x)

+~3%(t——x)3F"’(x)+(t—x)sr(t——x), (1
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where
[r(t—x)|<Mfortel and lim (1 —x)=0.

f—=x

Differentiating this formula with respect to ¢ we get a.e. in [
’ 1 2 d 3
JO=fx) + (= x)f'(xX) +5 (1= %)"S"(x) + = (1= %) r(t = x)).

Multiplying this by (n+ 1) and taking the operator P, on both sides we get
(see [9])

1

(n+1)(P,f = [)x) =7 (1-2x) f'(x)

1., n I\ 1
+3/") [x(l”x)n+1_<x(1"x)_§>n+1]

+(n+1) [Pn <% ((t—x)’r(z —x)))] (x).

In the following the last term in the sum on the right side will be denoted
by (n+ 1)E*(n, x). Hence the proposition will be proved if we show that

lim (n+ 1) E*(n, x)=0. (2)

n— X

Using the well known relation between the KantoroviC operator P, and the
Bernstein operator B, ; (see [5, p. 30]),

& (8,01 F)w)= (P, ),

and considering the result at the fixed point x, we get

1) E _( ] n+1 k 3 k
(n+1)E¥(n, x)=(n+ )kZ (n—-l—l_x> r(m—x>

=0

x(n_]: 1) X1 =x)""*k— (n+ 1)x).

Consider now

(n+ 1) x(1 — x) E*(n, x)

1 n+1 k
=mk2 Puv LX)k —(n + 1)x)4r<n+ 1 _x>_

=0
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Choosing ¢> 0, there exists a 6 >0 so that |r(z—-x)} <& for all |r—x| <$
and we obtain

(n+ 1) x(1 —x) |E*(n, x)|

A

()

1 { S k(DX s (0) |7

p
(n+ 1) Lins Hoxi<s

1 1 3
mt 13282 k— 1 1, )
+(n+1)252 |k/tn+§:—x|>5( (1) P 1(3) ( >}
1 n+1
<(n+1)2{ Z (k—(n+ 1D)x)*p,  14(x)
1 Mn+1
+(n+1)252 Z (k_(n+1)x) pn+1k( )}
<x(1 K I M
*(1=x) {H +152}

with a constant K independent of n and x. The last estimate follows by
Lorentz’s formulas (see [5, p. 14]).
From this we have (2) and the lemma is proved.

Note that we get from the above estimate

(n+1)|E*(n, x)| <K, (3

¢

where K is independent of #n and x which will be used later.
For the analogous term referring to the operator M, we get the following
result:

Lemma 1.3, Let feL,(I), [ twice differentiable in a point xe (0, 1).
Then the following estimate holds.

(n+ 1) |E(n, x)] < K1+ (x(1 —x)) 1]

with a constant K independent of n and x and
d 3
E(n,x)= Mn :l;(([_x) r(t—x)) (x)’

where (t — x)’r(t — x) is the same remainder term as in (1).

Proof. The proposition follows as a direct consequence of the estimates
in [3]. Derriennic got by means of integration by parts
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E(n, x)=(n+ 1)(x"(1 = x)’r(1 = x) + (1 = x)"%’r(—x))
~ (4 1) Y pual) | pual)—x) (e —x) .
k=0 7

Obviously the first term on the right side equals O(1/(n+ 1)). The second
term will be denoted by e(n, x). There holds (see [3])

(x(1 — x) ne(n, x))*

n—1
<D pr e N+ 1 5= Gt D | 25,000 52 5 |
R

=0

4)
choosing ¢ and ¢ as in the proof of Lemma 1.2 and putting
n—1
Sunl)i= 3 Pusresr(¥) [ puc i al6)t—x)" d. 5)
k=0 !

Reference [3] gives us the estimate
1
Sn,Zm(x )=0 W

and by Lorentz’s formulas (see [5, p. 14]) we have that the term in the first
bracket on the right side of (4) is bounded by (n+1) x(1 —x). By sum-
marizing these results we get the proposition of Lemma 1.3.

We are now able to estimate the L -approximation error for certain log-
functions. From now on we define

g,(2) :=In(t), te(0,1],
2,(1) =In(1—1), te[0, 1),
g(t):=g,(t)—g,(2), te(0,1)

LEMMA 14. Let 1/g=(p—1)/p for 1< p<oo and l/g=1 for p=c0.
Then the following statements are valid.

1 l/q _ — _1_.>
Q) 1x0, 8- )1, = 0 ()

.. 1
(i) (1= x)"(M, g, — g2)ll,= O (m>

(i) [x¥(1 —x)"(M,g— g)l,= O ('ﬁlr_l) '



L ,-SATURATION 265

Proof. First we remark that
lx"4(M, g1 — g, = (1 —x)"(M, g, — g2)ll,

holds by a change of variables and transformation of the summation index.
Furthermore (iii) is a direct consequence of (i) and (ii). So we only have to
prove (i). We will deal explicitly with p=1 and p= oo using interpolation
methods (see also [107]) for the remaining cases.

p=1 As g,eL,(I)and g, is twice differentiable in every point xe((, 1],
we get from the result in [3] by putting in the terms of g} and g{

1) 16
(4 1M, 1~ )0 = | o 49

+(n+1) E(n, x).
Thus we have

6(n+1)? 3

“m(})ngx'gl)(x}j

B 6(n+1)>
(n+2)(n+3)

MX¥(x):=(n+1) [(Mngl - &)(x)

2n(n+1)

:m+—3)+(n+1)[E(n,x)

E*(n, x)].

By (3) and Lemma 1.3 we get

IM¥(0) < K(1+ (x(1 —x)) ") =1 5(x) ac.onl {6}

This means that there exists a function se L, {7) which bounds |M*(x)|
independent of n a.e. on L

We are now able to change integration and taking the limit by use of
Lebesgue’s dominated convergence theorem,

Tim M,
. 6 12
= [, im0 DM, 81— (0~ o (P~ 1)) s

dx=2.

1 1 | 1
(1—2x) = — x(1 —x) 5 — 3(1 — 2x) =+ 3x(1 — x) —
X X X P

ZL

Hence we get from the definition of M} and the fact that
1P,gi—g:ll,=0(1/(n+1)) (see [10]) the proposition for the case p=1

640/54/3-3
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6(n+1)
1M, 81— 21 < UM, 81— 81~ G g (P )l
6(n+1)° YE
_‘___—(n+2)(n-|—3)”Pngl_gl”l—0<n+l>'

Now we treat the case
p=c0. We look at

Ix(M, g1 — 8o < IX(M, g1 — g K+ Ix(M, g, — g ) 5>,

Using the fact that [x(P,g,— g:)]-=0(1/(n+1)) (see [10]) and the
estimate (6) we obtain

0.1/27 _ __1__
(M, £~ 13 =0 (7 ). Q)

Now we have to look at xe[3, 1].
By the same arguments as in the proof of Lemma 1.2 with the Taylor
formula for G(¢) := (! g,(z) dz we have

G(t)=G(x) + (t—x) G'(x)+-; (1— x)2 G"(x)

1 1
+ 3 (t—x)* G"(x) +E (t—x)*G""(x) + (t — x)*r(t — x),
where
Ii—x)| <M, te[0,1] and  Lim r(t—x)=0.

[

Differentiating this with respect to ¢ and taking the operator M, on both
sides we get by using the recursion formulas for

S Pl [ pulOi—xydt,  seN,
k=0 4

(see [2])
(n+1)[(M,g,— g )(x)| <K+ (n+1)|R(n, x)|
with

R(n, x) := [M,, (-g; ((z—x)* r(t—x)))] (x).

We have used the fact that xe [, 1] implies the boundedness of | g{*'| for
k=123
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By the same arguments as in [37] we get
|R(r, )] < {n+1) |x"(1 —x)* r(1 —x) + (1 = x)" x*r(—x)|

+(n+1)

‘Z fpnk(t)(rvv)“ (z—x)d,
=:ry(x) +ra(x)

and r, is bounded by K/(n+ 1), K independent of » and x.
In an analogous way to [3] we obtain

(1 —x) (¥ < w+wm—>&&mw &u{]<m

S,mx) defined as in (5).
Using the notation

n—1

1 , .
Sralx) = Eom Pr—1.48X) L Pt —x)" dt
we have
nm(-x) —x(l _x) n(n + 3 ) Snm\x)

and we can deduce by straightforward calculation the recursion formula

1
S:‘m(x):n [X(I_Y)(Snm I(Y)

+ z(m - 1) S H,m— Z(X)) +m(1 —“2’( Sn m— l(x)]
and by estimating S¥(x) and S¥(x) we get

1— 1—x
Sae <k s i<k

the constants K, and K, being independent of # and x.
From this we get with (8)

(x(1 = x) nry(x))* < (x(1 — x))? [K182+K35—Ai]-

Hence |r,| = O0(1/(n+ 1)).
Thus it follows that

1
_ (11211 = ¢
Ix(M, 8, = g1} (751)
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and taking account of (7) we have proved the case p=co. The cases
1 < p < oo now follow by using interpolation theory.

Now we possess the necessary tools for the proof of the main results.

3. SATURATION OF M,

We first mention a direct theorem. We have proved the same estimates
for log-functions concerning M, as they were given for P, in [7, 10].
Using the representation

(M,.£)(x)= | Kin. 1, ) f(0) dt,

where

Km t,x)i=(n4+1) S poc) puclt)
k=0

we are now able to show the direct result in the same way as in [10].

THEOREM 2.1. Let feL,(I), f€S,. Then the following result holds:

CLL/ N, + 1471, I<p<oo,
Cllal o + Ikl 5v ), P=1,

C denoting a constant independent of n and x.

(n+1) IIMnf—fll,,<[

Proof. Using the representation
J(0) = flx)=x(1—x) f'(x)(g(t) — g(x)) + ftx (g(u) — g(1)) dh(u)

we get by applying the operator M, then taking L, -norms on both sides
and using Lemma 2 in [10] (fe L,(]), f€S,, 1 < p< oo implies /"€ L,(1))

1,511, || ¥ (] et = st0) anw) [

r4

Cc
—\f l<p< oo,
n+1||fl|,,, J Ao

M C
— A, =1,
n+1|| fl o b4

where we write the variable x in the L,-norm only for more clearness. Thus
we now have to estimate the first term on the right side. Again we do this
only for p=1 and p = oo using interpolation theory (see [10]) for the rest
of the proposition.
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p=1. By using Fubini’s theorem and the fact that

sgn( g(u) — g(1)) =sgn(u—1),
we get

dx

)

|0, ([ (= gto) dht) | 0

<[ 1] et - g0) )10

+ " D800~ ) )10 de} e,

We now show that the term in the curly bracket equals O(1/(n+ 1)) which
completes the proof for the case p=1.
For every function fe L{(]) it is easily seen that there holds

[ (M, 1= f)x) ax=o,

7
i

As (g(u)— g(x)), =0 for u< x, it follows that

0= [" LEM, (80— £(1)))1(0) — (gl)~ £(x)) . T dx

+j1 [M,((glu)—g(1)) ) ](x) dx.

Thus

‘ 1
{-} =f0 (M, g— g)(x) dxsfl (M, g—g)(x) dx=0 (m)

by Lemma 1.4(iii}.
p = oo. With analogous transformations as in [10] we get

X |
| 4. (] cetw= ey an) | )

SIA oo { —x[(M, g — g)(x)1— (1 = x)[(M, g, — g )(x)1}

, 1
- nw(n—;l)

by use of Lemma 1.4(i), (ii).

The proof of the following inverse theorem for the cases 1 < p < oo will
be based on the investigation of special sequences of functionals.



270 MARGARETA HEILMANN

THEOREM 2.2. Let feL,(I), 1< p<oo, and

1M, = flp=0 (7).

Then for the function f there holds f€ S,.
Proof. We first look at the case

p=1L Let feL(I) with |[M,f—fl,=0(1/(n+1)) and (L,),.n 2
sequence of linear functionals defined for all ¢ € C(I) by

Ly(g) =] (4 1)(M,.f = 1)(x) o(x) dx. 9

We now prove two propositions about their convergence.

PROPOSITION 2.2.1.  For all ¢ € C*(I) there holds
nlingo L.(¢)= Lf(x)(x(l —x) ¢'(x)) dx=: L(p). (10)

Proof. By [2, Lemma IIL3, Theorem I1.5] we have for all o, fe L,(I)
the symmetric relation

J, (4,2)06) Bee) e = | ae)(M, B)(x) dx

and for all ¢ € C*(1),

lim (n+1)(M,0—@)(x)=(x(1—x)¢'(x))

n— oo

uniformly on 7.
Using these facts we get

lim (n+1) [ (M, —/)(x) o(x) d

n— o0

lim (n+1) | (M0 —9)(x)f(x) dx

n-— I

J 7 lim (14 1)(M, 0 — 9)()] dx

= /(1 —x) @' (x) dx

and Proposition 2.2.1 is proved.
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ProrosiTioN 2.2.2. For all ¢ € C(I) there exists a subsequence (L, ) .n
of (L,),cn Such that

lim L,(0)=[ o(x) dh(x)=:L*(¢), (11)
k— x 7
where he BV(I) and h(0)=h(1)=0.
Proof. As [M,f —fll, = O(1/(n+1)), we get

with a constant K independent of »n. Thus the sequence (L,),.y iS
uniformly bounded.

By Riesz’s representation theorem there exists for every L, a unique
h, € BVN(I) such that

L(9)=[ o(x)dh,(x)forall pe C(1) ~ and IL,1=\/ o)
I 0

where he BVN([a, b]) if 4 is of bounded variation on [a, b7 and A{a)=0.
We show that

hnz(n—*_])(Mnf”F)v

where
F(x>=j:f(z)dr
and
(W, =t 1) Y [ pultrde | pult) 0y ar
k=0"0 i
We have

(e O, f— P =+ DM, f = 1))

and (n+ 1) M,f— F)e BVN(I) as M, f is a polynomial of degree n, Fis an
absolutely continuous function on I, and (M, f)(0)= F(0)=0. Therefore
h,=(n+1)(M,f—F) as h,e BVN(I) is unique.

From

{
L Pul?) dt:m
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we get h,(1)=0. We have |L,| =Vi(h,)=|lh, | g uniformly bounded and
[B ()] = B, (x) — B, (0)] < [|A, || 5.

Hence by two theorems of Helly and Bray (see [11, Theorem 16.3,
Theorem 16.4]), there exists a subsequence (L, )ken SO that

klim Lnk((p)=J o(x) dh(x), he BV(1), (0)=h(1)=0

and Proposition 2.2.2 is proved.
From (10) and (11) we now have for all ¢ € C*(I)

J 70)x(1 =) /()Y de= | p(x) dn(), (12)

where he BV(I), h(0)=h(1)=0.
This is the same equation as in Maier’s proof for the L -saturation of the
Kantorovi¢ operators (see [7, (14)7). Hence

h(1)
H{1—1)

f(x)=k+r dt ac.onlLkeR, ye(0,1)
y

and the case p=1 is proved.

We now look at

l<p<o. Let felL,) with |M, f—f|l,=0(1/(n+1)) and for
¢ € L,(I) consider the sequence of functionals defined in (9).

The equality (10) still holds true and we get by Hoélder’s inequality

IL@) < (n+ 1) IM, f=fll, loll,<Klol, forall ¢eL/])
as [|M,f—fl,=0(1/(n+1)). This implies the uniformly boundedness of
the sequence (L,),.n-
As every ball of LX(I) is weakly*-compact, there exists a subsequence
(L )ken which is weakly*-convergent to a functional L* in L, (I). The

representation theorem for bounded linear functionals in L (7) gives us the
existence of a function #e L,(I) such that

L¥(p) = h(x) p(x) dx. (13)

Now (10) equals (13) for all ¢ € C*(I) and we have

J 7001 =) ¢/ Ge)y dix =] 9(x) ) . (14)
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The same equation was obtained by Maier in his proof for the L,-
saturation of the Kantorovi¢ operators [8, (8)]. Hence fe§, and the
theorem is proved.

Theorems 2.1 and 2.2 now give a global saturation result for the

operators M, and we see that they have the same saturation order and
class as the KantoroviC operators.

The trivial class follows as a direct consequence of the above proofs as

the solutions of the homogeneous parts of the integral Egs. (12) and {14},

11

CoroLLARY 23. For feL,(I), 1 <p< o, there holds

n+1

IIMnf—fII,,=0< >¢>f=k de. on I where ke R,
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